Long-Term Passive Ventilation
at Yucca Mountain

Evidence from Natural Analogues

Although natural ventilation is not as efficient at
water removal as forced ventilation, it can enhance

the effectiveness of a geologic repository
in isolating radioactive waste.

By John S. Stuckless and
Rickard S. Toomey lI]
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arate of 45 mm/year.’ Evidence from

natural analogues indicates possible
benefits from passive ventilation for

the repository planned for Yucca

Mountain.

ANALOGUE EXAMPLES

Stuckless*® has documented excel- -

lent long-term preservation of fragile

items found within the unsaturated -
zone (vadose zone). Examples range -

from exquisitely painted churches

carved in tuff (Gorome, Turkey, 11th -
century A.D.) to painted Buddhist -
temples carved in basalt (Ajunta, In-
dia, 2nd century B.C to 6th century -

A.D.) to painted tombs and a variety
of fragile artifacts (Egypt, 3000 to 300
B.C.) and Paleolithic cave paintings

(France and Spain, 14 000 to 32 000 :
B.C.). Stuckless* noted that the de-
gree of preservation seemed to be best -
when the artifacts were surrounded
by air rather than soil. The terra cot- -
ta solders of Qin Shi Huang (2nd cen-

tury B.C.) were preserved but nearly
devoid of their original paint. Like-
wise, the terra cotta army of Jing Di

(Ist century B.C.) had lost their
wooden arms and cloth uniforms.
The implication is that ventilation

may play an important role in long-
term preservation within the unsatu-
rated zone.

Natural ventilation has been stud-
ied in literally hundreds of caves
throughout the world, and the gener-

al principles are reasonably well un- -
derstood.®” Furthermore, the study of -
airflow in some caves has progressed
to the point that mathematical de-
scriptions and models of flow have -
been developed for small, simple sys- -

tems as well as for parts of large sys-
tems. Some examples include the his-
toric entrance of Mammoth Cave in
Kentucky,® Glowworm Cave in New
Zealand,” Wind Cave in South Dako-

ta,'%"" and Kartchner Caverns in Ari- -
zona.'>'3 In the majority of caves, air -
circulation is driven by two general
mechanisms: changes in barometric -

pressure and air density differentials.
In most caves where air density dif-
ferentials drive airflow, the most

important variable controlling air-
density variations is temperature dif-

ferentials, generally between the out-
side and inside air. For that reason,
caves with density-differential-driven
airflow are commonly referred to as
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Fig. 2. Wind Cave in South Dakota has a small single opening, and air circu-
lation is controlled by barometric changes. Wind velocities can reach 120 km/h
with large pressure changes.
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- Fig. 3. Carlsbad Caverns in New Mexico is a single-opening cave and is sub-
- Ject to pressure circulation, but air turnover is very seasonal. Cold winter air
(blue) sinks into the cave and displaces warm moist air (red).
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Fig. 4. Radon activity concentrations (in kilobecquerels per cubic meter) and
- outside air temperature as a function of time in Szemlo-Hegy Cave in Hungary
- (from Ref. 15, Fig. 4).
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In the majority of caves,
air circulation is driven by two
general mechanisms: changes

in barometric pressure and
air density differentials.

evations. These entrances at different elevations
allow for a reversal of air circulation depending
on the season. In the summer, the relatively
cooler air in the cave flows out the lower open-
ings, and warm air 1s drawn in through the up-
per openings and cooled. During the winter, the
relatively warm, moist air in the cave is lost from
the upper openings, and cooler air is drawn in
through the lower openings. The velocity of air-
flow is proportional to the temperature differ-
ence between the air outside and inside the cave.

temperature-difference-driven systems or convection-
driven systems. In caves with multiple entrances at dif-
ferent elevations, this type of airflow is also known as
“chimney effect” airflow. Airflow in any particular cave
is dependent on numerous parameters, including (a) the
numbcr, size, and configuration of cave entrances; (b) the
size of the cave; (c) the presence 2 and configuration of con-
strictions and obstacles in the cave passages; and (d) the
outside and within-cave climates.

Wind Cave in South Dakota provides an end-member
case for barometrically controlled air circulation, as il-
lustrated in Fig. 2. In this example, the cave has only one
opening, a large volume, and a tight cap rock that iso-
lates the cave from the atmosphere. The passage of a
high-pressure system “pumps” the cave full of air. Con-
versely, the passage of a low-pressure system allows the
stored air to exhaust. The small area of the entrance com-
bined with the barometric pumping results in air veloc-
ities as much as 75 miles per hour (120 km/h). At Wind
Cave, when the walk-in entrance is open, an average of
almost 3000 m? of air enters or leaves

Jernigan and Swift® discussed mathematical
modeling of the airflow at one of the entrances. Studies
at Mammoth Cave also illustrate the importance of the
area of the openings. The removal of a gate and stone
wall at the upper entrance in 1991 caused such an in-
crease in winter airflow that radon levels in the cave de-
creased by a factor of 9." There was also a relative dry-
out and decrease in mean temperature much farther into
the cave than had existed previously.

Przylibski® studied radon distribution in two caves in
Poland. Niedzwiedzia Cave is largely isolated from the
atmosphere by air gates. Nonetheless, the radon con-
centrations vary with outside temperature much as de-
scribed at Carlsbad Caverns. Radon was measured at
seven locations within the cave—at the floor, ceiling, and
midpoint levels at each location. The results show a slight
tendency for increased radon concentration near the
floor of the cave and a more pronounced increase away
from the entrance. Thus, “as a rule, locations farther
from the entrance have poorer ventilation and higher
radon concentrations.”??

the cave per hour.'* Lewis discussed
the role of air pressure changes in
cave airflow in his review.!®

There are two end members of air-
density- (or temperature-) driven air
ventilation systems. Carlsbad Cav-
erns, in New Mexico, has a single en-
trance and therefore responds to
barometric pressure change in a man-
ner similar to that of Wind Cave;
however, its geometric layout is dom-
inantly vertical (Fig. 3), and thus air
exchange is controlled by tempera-
ture. In the winter, cold outside air
sinks into the cave displacing the
warmer moister cave air. This phe-
nomenon of seasonal airflow is best
illustrated by the much lower radon
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content within the cave during the
winter relative to summer.'®!"” Figure
4 illustrates this phenomenon over an
11-year period at Szemlo-Hegy cave in Hungary.'® In
smaller caves with this type of seasonal airflow, the air
temperature of the cave commonly will be well below
the mean annual temperature of the surrounding area in
which the cave is located; that is, the cave will be a cold-
air trap.

The other end member of an air-density- (or temper-
ature-) driven system is approximated by Mammoth
Cave in Kentucky (see Fig. 5). Mammoth Cave has nu-
merous entrances (natural and manmade) at different el-

Fig. 5. Caves like Mammoth Cave in Kentucky have multiple openings, and air
circulation is driven by temperature differences.

Lechuguilla Cave, within the Carlsbad Caverns Na-
tional Park, has more than 160 km of passageways and an
overall depth of 477 m. Most passages are at an average
depth of 244 m below the entrance and are farther than
1.6 km away from the entrance.?’ Cunningham and
LaRock® studied microclimate in the cave by sampling at
48 locations in the cave and found little correlation be-
tween air circulation (as indicated by radon concentra-
tions) and outside air temperature or barometric pressure
changes except near the entrance of the cave. This lack of
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Fig. 6. Kartchner Caverns in Arizona is apparently a single-opening cave, but the high degree of fracturing causes cir-
culation like that of a cave with openings at different elevations. Lengths of arrows show relative difference in airflow in

summer and winter.

correlation was observed even though the passage of a
low-pressure system during a sampling period caused a
0.16 km/h airflow out of the cave during one sampling pe-
riod and a high-pressure system caused an airflow into the
cave of 40 km/h during another sampling period. Some
air mixing within the cave was attributed to elevation dif-
ferences within the cave, but commonly the air in the
deeper, more remote reaches of the cave was fairly stag-
nant. Four exceptions were found where fresh air (as in-
dicated by temperature, radon, and CO, concentrations)
suggested connection to the surface where none is known;
alternatively, these anomalies could represent a deep frac-
ture flow system.

Kartchner Caverns, Arizona, provides an example of a
cave with only one known opening, but which must have
communication with the land surface by fracture systems,
as shown in Fig. 6. The airflow is similar to that at Mam-
moth Cave. During the winter, warm moist air is lost to
the surface by an upper opening, even though none is
known. This cave is shallow, and it is cut by more than 60
mapped faults within an area that in plan view is only about
5500 by 3600 m.** Thus, connections to the surface

through which air can flow are to be expected. Unlike -

Mammoth Cave, the velocity of airflow does not seem to
be proportional to temperature differences,'® probably ow-
ing to the greater resistance to air movement provided by
the fracture system relative to that provided by large open-
ings. This difference also explains the tendency for Kartch-
ner Caverns to be more responsive to pressure changes
than to temperature changes during the summer months.

Airflow in caves is not generally large enough to de-
crease the relative humidity below 99 percent, and, in
fact, a conscious effort is made in “show caves” to keep
airflow at a minimum to prevent dry-out of the caves
and the concomitant cessation of speleothem formation.
Several caves, especially those where the size of the nat-
ural opening has been expanded to accommodate pub-
lic access, have a system of air-lock doors that prevents
large volumes of air exchange. At Kartchner Caverns
before development for tourism, the average moisture
lost from the cave by evaporation was estimated to be
21 000 gallons per year (92 500 L/year). Air-lock sys-
tems on the manmade entrances now keep the postde-
velopment moisture loss similar to that observed pre-
development.

Yucca MouNTAIN

Yucca Mountain provides a self-analogue for passive
ventilation and water removal. The mountain is com-
posed of Miocene pyroclastic units that are welded to
varying degrees. Many boreholes have been drilled in the
mountain as part of the site characterization conducted
by the U.S. Department of Energy. Two boreholes were
drilled near Yucca Crest USW UZ-6 and USW UZ-6S,
about 1 km south of SD-6 (see Fig. 7a); both exhibit con-
stant airflow. Borehole UZ-6 is drilled through the Tiva
Canyon Tuff into the top of the Topopah Spring Tuff and

has only shallow surface casing. Borehole UZ-

Ventilation may play an
important role in long-term
preservation within the
unsaturated zone.

65 is drilled through the Topopah Spring Tuff
and is cased to the base of the Tiva Canyon Tuff.
In the winter, both boreholes exhaust air that is
at a near-constant temperature and is saturated
with water vapor.?* The total water lost from the
two boreholes is about 650 L/day. The airflow
is caused by the air in the well being warmer and
moister and therefore less dense than the at-
mospheric air. The latter is presumably drawn
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Fig. 7a. Schematic cross sec-

Solitario
[ Canyon

Elevation in meters above mean sea level

tion of Yucca Mountain (modi-
fied [red lines] from Ref. 2, Figs.
4-9) showing the hydrogeolog-
ic units, principal faults, a po-
tential repository, and possible
augmentations to passive ven-
tilation (in red).

Ghost
Dance

Borehole fault

7 CHn (zeolitic) l
/ CHn (vitric or
) deviified)

in through the fractured
Topopah Spring Tuff, where it
crops out in Solitario Canyon.
Direction of airflow during
the summer is erratic, and, as
with  Kartchner Caverns,
barometric effects are much
more important than in the
winter.

Figure 7 presents a sche-
matic cross section and plan
view of a potential repository
at Yucca Mountain. The geo-
hydrologic system of the
mountain is favorable for a
passive ventilation system
similar to the naturally occur-
ring one at Kartchner Cav-
erns, even after access tunnels
and ventilation shafts have
been sealed. The welded part
of the Tiva Canyon Tuff has a
very high air permeability
(about 100 darcies); therefore,
residence time for air in the
wff ranges from 1.6 to 3.0
years with a mean value of 2.5
years.” The intervening non-
welded tuff (PTn) between
the welded parts of the Tiva
Canyon Tuff and the
Topopah Spring Tuff has a
much lower air permeabili-
ty,”* and where wet is nearly
impermeable to the flow of
air. The welded part of the
Topopah Spring Tuff is hy-
drologically similar to the
welded part of the Tiva
Canyon Tuff. Studies of car-
bon isotopes and chlorofluo-
rocarbons in samples of air
from the unsaturated zone
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Fig. 7b. Schematic plan view of a potential repository at Yucca Mountain showing ven-
tilation drifts (in red) that terminate in faults or raises that extend to the base of the
welded part of the Tiva Canyon Tuff (modified [red lines] from Ref. 2, Fig. 2.5).
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show that air circulation is rapid from the sur-
face to the base of the Tiva Canyon Tuff but that
the Topopah Spring Tuff is at least partly iso-
lated from the atmosphere except where it is
connected to the surface by boreholes or out-
crop.”’

A cross drift has been constructed through
the proposed repository block. This drift has
been bulkheaded at three places to simulate the
final closure and scaling of the proposed repos-
itory. However, the drift has natural pneumat-
ic connections to the surface by way of the Soli-
tario Canyon fault and through outcrops of
tractured Topopah Spring Tuff (see Figs. 7a and
7b). These pathways may explain the airflow
out of the first bulkhead during the passage of
a low-pressure system (barometric pumping).
Unfortunately, after sealing of the proposed
repository, this pumping might ventilate only
the western side of the proposed repository in
a manner analogous to that seen in single-en-

Airflow in caves is not
generally large enough to
decrease the relative humidity
below 99 percent, and, in fact,
a conscious effort is made in
“show caves” to keep airflow
at a minimum to prevent dry-
out of the caves and the
concomitant cessation of
speleothem formation.

trance caves. If the PTn is brecciated by the
Ghost Dance fault, then extending drifts from the
perimeter drift into the fault zone might create a natur-
al ventlation flow through the repository from the low-
er eastern side and out the higher western side with the
tlow being strongly augmented by heat from the ra-
dioactive waste (Fig. 7a). If the PTn is not brecciated by
faulting, or is absent north of the region of known off-
set, raises could be driven to the base of the welded part
of the Tiva Canyon Tuff. Because neither the raises nor
the western perimeter drift would reach the surface,
there would be no accessible path for human intrusion.
Seals at the ends of the emplacement drifts would need
to be designed both to allow air circulation and to pre-
vent radiation leakage.

PAssIVE Is A PLus

The information developed here from natural analogues
suggests that there may be considerable benefit to the Yuc-
ca Mountain Project if the feasibility and benefits of long-
term passive ventilation are investigated. This is especial-
ly true with respect to the impact on unsaturated zone

hydrology. The dry-out period may be extended, and the

seepage flux likely would be decreased or even tortally
abated.
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